FST34170 - 17-Bit to 34-Bit Multiplexer I De-multiplexer Bus Switch

Features

- Slower Output Enable Times Prevent Signal Disruption
- 4Ω Switch Connection between Two Ports
- Minimal Propagation Delay through the Switch
- Low Icc
- Zero Bounce in Flow-through Mode
- Control Inputs Compatible with TTL Level

Related Resources

- AN-5008 - FSTU - Undershoot Protected Fairchild Switch Family

Description

The FST34170 Fairchild switch is a 17-bit to 34 -bit, high-speed, CMOS TTL-compatible multiplexer / demultiplexer bus switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device can be used in applications where two buses need to be addressed simultaneously. The FST34170 is designed so that the A port de-multiplexes into B1 or B2 or both. Two select ($\mathrm{SEL}_{1}, \mathrm{SEL}_{2}$) inputs provide switch enable control.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FST34170MTC	-40 to $85^{\circ} \mathrm{C}$	56-Lead, Thin Shrink Small Outline Package (TSSOP) JEDEC MO-153, 6.1mm Wide	Tube
FST34170MTCX	-40 to $85^{\circ} \mathrm{C}$	56-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide	Tape and Reel

All packages are lead free per JEDEC: J-STD-020B standard.

Technology Description

The Fairchild switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Figure 1. Logic Diagram

Pin Configurations

$1 \mathrm{~B}_{1}$	1	56	1A
$2 \mathrm{~B}_{1}$	2	55	$1 \mathrm{~B}_{2}$
2 A	3	54	$2 \mathrm{~B}_{2}$
$3 \mathrm{~B}_{1}$	4	53	3 A
$4 \mathrm{~B}_{1}$	5	52	$3 \mathrm{~B}_{2}$
4A	6	51	$4 \mathrm{~B}_{2}$
$5 \mathrm{~B}_{1}$	7	50	5A
$6 \mathrm{~B}_{1}$	8	49	$5 \mathrm{~B}_{2}$
6 A	9	48	$6 \mathrm{~B}_{2}$
$7 \mathrm{~B}_{1}$	10	47	7A
$8 \mathrm{~B}_{1}$	11	46	$7 \mathrm{~B}_{2}$
8A	12	45	$8 \mathrm{~B}_{2}$
GND	13	44	GND
V_{Cc}	14	43	9A
$9 \mathrm{~B}_{1}$	15	42	$9 B_{2}$
$10 B_{1}$	16	41	$10 \mathrm{~B}_{2}$
10A	17	40	11A
$11 \mathrm{~B}_{1}$	18	39	$11 \mathrm{~B}_{2}$
$12 \mathrm{~B}_{1}$	19	38	$12 \mathrm{~B}_{2}$
12A	20	37	13A
$13 B_{1}$	21	36	$13 \mathrm{~B}_{2}$
$14 \mathrm{~B}_{1}$	22	35	$14 \mathrm{~B}_{2}$
14A	23	34	15A
$15 \mathrm{~B}_{1}$	24	33	$15 \mathrm{~B}_{2}$
16B1	25	32	$16 B_{2}$
16A	26	31	17A
$17 \mathrm{~B}_{1}$	27	30	$17 \mathrm{~B}_{2}$
SEL_{1}	28	42	SEL ${ }_{2}$

Figure 2. TSSOP Pin Assignments

Pin Descriptions

Pin \#	Pin Names	Description
$1,2,4,5,7,8,10,11,15,16,18,19,21,2$ $2,24,25,27,30,32,33,35,36,38,39,4$ $1,4245,46,48,49,51,52,54,55$	$1 \mathrm{~B}_{1}, 2 \mathrm{~B}_{1}, 3 \mathrm{~B}_{1}, 4 \mathrm{~B}_{1}, 5 \mathrm{~B}_{1}, 6 \mathrm{~B}, 7 \mathrm{~B}_{1}, 8 \mathrm{~B}, 9 \mathrm{~B}, 10 \mathrm{~B}_{1}, 11 \mathrm{~B}_{1}$, $12 \mathrm{~B}_{1}, 13 \mathrm{~B}_{1}, 14 \mathrm{~B}_{1}, 15 \mathrm{~B}_{1}, 16 \mathrm{~B}_{1}, 17 \mathrm{~B}_{1}, 17 \mathrm{~B}_{2}, 16 \mathrm{~B}_{2}$, $15 \mathrm{~B}_{2}, 14 \mathrm{~B}_{2}, 13 \mathrm{~B}_{2}, 12 \mathrm{~B}_{2}, 11 \mathrm{~B}_{2}, 10 \mathrm{~B}_{2}, 9 \mathrm{~B}_{2}, 8 \mathrm{~B}_{2}$,	
$3,6,9,12,17,20,23,26,31,34,37,40$,	$2 \mathrm{~A}, 4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 12 \mathrm{~A}, 14 \mathrm{~A}, 16 \mathrm{~A}, 17 \mathrm{~A}, 15 \mathrm{~A}, 13 \mathrm{~A}$,	Bus B
$43,47,50,53,56$	$11 \mathrm{~A}, 9 \mathrm{~A}, 7 \mathrm{~A}, 5 \mathrm{~A}, 3 \mathrm{~A}, 1 \mathrm{~A}$	
13,44	GND	Bus A
14	$\mathrm{~V}_{\mathrm{cc}}$	Ground
28,29	$\mathrm{SEL}_{1}, \mathrm{SEL}_{2}$	Supply Voltage

Truth Table

Inputs		Function
SEL_{1}	SEL_{2}	
LOW	HIGH	$x A=x B_{1}$
HIGH	LOW	$x A=x B_{2}$
LOW	LOW	$x \mathrm{~A}=\mathrm{xB}_{1}$ and xB_{2}
HIGH	HIGH	Switch Open

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	7.0	V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage $^{(1)}$	-0.5	7.0	V
$\mathrm{~V}_{\text {IN }}$	DC Input Control Pin Voltage $^{(2)}$	-0.5	7.0	V
I_{IK}	DC Input Diode Current, $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$		-50	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Sink Current		128	mA
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\mathrm{CC}} /$ GND Current		± 100	mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$

Note:

1. V_{S} is the voltage observed/applied at either the A or B ports across the switch.
2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Power Supply Operating	4.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	0	5.5	V
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Switch Control Input ${ }^{(3)}$	0	
		Switch I / O	ns / V	
T_{A}	Operating Temperature, Free Air	0		

Note:

3. Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	4.5			-1.2	V
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		4.0 to 5.5	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		4.0 to 5.5			0.8	V
1 N	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	5.5			± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	0			10	$\mu \mathrm{A}$
loz	Off-state Leakage Current	$\begin{aligned} & 0 \leq \mathrm{A}, \leq \mathrm{V}_{\mathrm{cc}}, V, \\ & 0 \leq \mathrm{B}, \leq \mathrm{V}_{\mathrm{cc}}, \mathrm{~V} \end{aligned}$	5.5			± 1.0	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(4)}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=64 \mathrm{~mA}$	4.5		4	7	Ω
		$\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$	4.5		4	7	
		$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\text {IN }}=15 \mathrm{~mA}$	4.5		8	14	
		$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\text {IN }}=15 \mathrm{~mA}$	4.0		11	20	
Icc	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{l}_{\text {lut }}=0 \end{aligned}$	5.5			3	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}$	Increase in Icc per Input	One Input at 3.4 V , Other Inputs at V_{Cc} or GND	5.5			2.5	mA

Note:

4. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

AC Electrical Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}$, and $R_{U}=R_{D}=500 \Omega$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$		Units	Figure
			Min.	Max.	Min.	Max.		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay A or B, to B or $A^{(5)}$	$\mathrm{V}_{\text {IN }}=$ Open		0.25		0.25	ns	Figure 3 Figure 4
tpzh , tpzL	Output Enable Time, SEL to A, B	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\text { Open for } \mathrm{t}_{\text {PzH }}, \\ & \mathrm{V}_{\text {IN }}=7 \mathrm{~V} \text { for } \mathrm{t}_{\text {PZL }} \end{aligned}$	7	30		35	ns	Figure 3 Figure 4
$\mathrm{t}_{\text {PHZ }}, \mathrm{tpLZ}$	Output Disable Time, SEL to A, B	$\mathrm{V}_{\mathrm{IN}}=$ Open for $\mathrm{t}_{\text {PHz }}$,	1.0	6.9		7.3	ns	Figure 3 Figure 4
		$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ for $\mathrm{t}_{\text {PLZ }}$	1.0	7.7		7.7		

Note:

5. This parameter is guaranteed by design, but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the 50pF load capacitance when driven by an ideal voltage source (zero output impedance).

Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized, but not tested.

Symbol	Parameter	Conditions	Typ.	Units
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	4	pF
$\mathrm{C}_{/ / \mathrm{O} \text { ofF }}$	Input/Output Capacitance, Off State	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Switched Off	8	pF

AC Loadings and Waveforms

Notes: Input driven by 50Ω source terminated in 50Ω.
C_{L} includes load and stray capacitance.
Input $\mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$.
Figure 3. AC Test Circuit

Figure 4. AC Waveforms

Physical Dimensions

Figure 5. 56-Lead, Thin Shrink Small Outline Package (TSSOP) MO-153, 6.1mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

[^0]LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 134

[^0]: Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
 http://www.fairchildsemi.com/packaging/

